
Big Data Processing Using Hadoop MapReduce 
Programming Model 

Anumol Johnson#1 

Master Of Technology, Computer Science And Engineering
Sahrdaya college of Engineering And Technology 

Calicut University, Kerala 

Havinash P.H#2 

Assistant Professor. Computer Science And Engineering 
Sahrdaya college of Engineering And Technology 

Calicut University, Kerala 

Vince Paul#3 

Head Of  the Department, Computer Science And Engineering 
Sahrdaya college of Engineering And Technology 

Calicut University, Kerala 

Mr.Sankaranarayanan P.N #4 

Assistant Professor, Computer Science And Engineering 
Sahrdaya college of Engineering And Technology 

Calicut University, Kerala 

Abstract— In today’s age of information technology processing 
data is a very important issue. Nowadays even terabytes and 
petabytes of data is not sufficient for storing large chunks of 
database. The data is too big, moves too fast, or doesn’t fit the 
structures of the current database architectures. Big Data is 
typically large volume of un-structured and structured data 
that gets created from various organized and unorganized 
applications, activities such as emails web logs, Facebook, etc. 
The main difficulties with Big Data include capture, storage, 
search, sharing, analysis, and visualization. Hence companies 
today use concept called Hadoop in their applications. Even 
sufficiently large amount of data warehouses are unable to 
satisfy the needs of data storage. Hadoop is designed to store 
large amount of data sets reliably. It is an open source 
software which supports parallel and distributed data 
processing. Along with reliability and scalability features 
Hadoop also provide fault tolerance mechanism by which 
system continues to function correctly even after some 
components fails working properly. Fault tolerance is mainly 
achieved using data duplication and making copies of same 
data sets in two or more data nodes. MapReduce is a 
programming model and an associated implementation for 
processing and generating large datasets that is flexible to a 
broad variety of real-world tasks. Users specify the 
computation in terms of a map and a reduce function, and the 
underlying runtime system automatically parallelizes the 
computation  across large-scale clusters of machines. 

Keywords— Big data,  Hadoop,  Distributed file system, 
MapReduce 

I. INTRODUCTION 

The emerging big-data paradigm, owing to its broader 
impact, has profoundly transformed our society and will 
continue to attract diverse attentions from both 
technological experts and the public in general. It is obvious 
that we are living a data deluge era, evidenced by the sheer 

volume of data from a variety of sources and its growing 
rate of generation. The exponential growth of data first 
presented challenges to cutting-edge businesses such as 
Google, Yahoo, 
Amazon, Microsoft, Facebook, Twitter etc. Data volumes 
to be processed by cloud applications are growing much 
faster than computing power. For instance, an IDC report 
predicts that, from 2005 to 2020, the global data volume 
will grow by a factor of 300, from 130 exabytes to 40,000 
exabytes, representing a double growth every two years. 
The term of “big-data" was coined to capture the profound 
meaning of this data-explosion trend and indeed the data 
has been touted as the new oil, which is expected to 
transform our society. The huge potential associated with 
big-data has led to an emerging research that has quickly 
attracted tremendous interest from diverse sectors, for 
example, industry, government and research community. 
Government has also played a major role in creating new 
programs to accelerate the progress of tackling the bigdata 
challenges. This growth demands new strategies for 
processing and analyzing information. 

Hadoop has become a powerful Computation Model 
addresses to these problems. Hadoop HDFS became more 
popular amongst all the Big Data tools as it is open source 
with flexible scalability, less total cost of ownership and 
allows data stores of any form without the need to have data 
types or schemas defined. Hadoop MapReduce is a 
programming model and software framework for writing 
applications that rapidly process vast amounts of data in 
parallel on large clusters of compute nodes. Map reduce is a 
software frame work introduced by Google in 2004 to 
support distributed computing on large data sets on clusters 
of computers.The original MapReduce implementation by 
Google, as well as its open-source counterpart, Hadoop, is 
aimed for parallelizing computing in large clusters of 

Anumol Johnson et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 127-132

www.ijcsit.com 127



commodity machines. MapReduce model advantage is the 
easy scaling of data processing over multiple computing 
nodes. 

II. BIG DATA 

Big data is a collection of data sets so large and complex 
which is also exceeds the processing capacity of 
conventional database systems. The data is too big, moves 
too fast, or doesn’t fit the structures of our current database 
architectures. Big Data is typically large volume of un-
structured (or semi structured) and structured data that gets 
created from various organized and computing problems 
across a number of servers. It is first developed and released 
as open source by Yahoo, it implements the MapReduce 
approach pioneered by Google in compiling its search 
indexes. Hadoops MapReduce involves distributing a 
dataset among multiple servers and operating on the data: 
the map stage. The partial results are then recombined: the 
reduce stage. To store data, Hadoop utilizes its own 
distributed file system, HDFS, which makes data available 
to multiple computing nodes. 
 
Big data explosion, a result not only of increasing Internet 
usage by people around the world, but also the connection 
of billions of devices to the Internet. Eight years ago, for 
example, there were only around 5 exabytes of data online. 
Just two years ago, that amount of data passed over the 
Internet over the course of a single month. And recent 
estimates put monthly Internet data flow at around 21 
exabytes of data. This explosion of data - in both its size 
and form - causes a multitude of challenges for both people 
and machines. 

A. The Three V’s of Big Data 

Big data technologies describe a new generation of 
technologies and architectures, designed to economically 
extract value from very large volumes of a wide variety of 
data, by enabling high-velocity capture, discovery, and/or 
analysis. This definition delineates the three salient features 
of big data, i.e., volume, variety velocity. As a result, the 
3Vs" definition has been used widely to characterize big 
data. First, the sheer volume of datasets is a critical factor 
for discriminating between big data and traditional data. For 
example, Facebook reports that its users registered 2.7 
billion like" and comments per day in February 2012. 
Third, the velocity of big data means that datasets must be 
analyzed at a rate that matches the speed of data production. 
For time-sensitive applications, such as fraud detection and 
RFID data management, big data is injected into the 
enterprise in the form of a stream, which requires the 
system to process the data stream as quickly as possible to 
maximize its value. Finally, by exploiting a variety of 
mining methods to analyze big datasets, significant value 
can be derived from a huge volume of data with a low value 
density in the form of deep insight or commercial benefits. 
 
1) Volume: We currently see the exponential growth in the 
data storage as the data is now more than text data. We can  
find data in the format of videos, musics and large images 
on our social media channels. It is very common to have 

Terabytes and Petabytes of the storage system for 
enterprises. As the database grows the applications and 
architecture built to support the data needsto be re-
evaluated quite often. Sometimes the same data is re-
evaluated with multiple angles and even though the original 
data is the same the new found intelligence creates 
explosion of the data. More sources of data are added on 
continuous basis. For companies, in the old days, all data 
was generated internally by employees. Currently, the data 
is generated by employees, partners and customers. For a 
group of companies, the data is also generated by machines. 
For example, Hundreds of millions of smart phones send a 
variety of information to the network infrastructure. This 
data did not exist five years ago. More sources of data with 
a larger size of data combine to increase the volume of data 
that has to be analyzed. This is a major issue for those 
looking to put that data to use instead of letting it just 
disappear. Petabyte data sets are common these days and 
Exabyte is not far away. The big volume indeed represents 
Big Data. 
 
2) Velocity: Initially, companies analyzed data using a batch 
process. One takes a chunk of data, submits a job to the 
server and waits for delivery of the result. That scheme 
works when the incoming data rate is slower than the batch 
processing rate and when the result is useful despite the 
delay. With the new sources of data such as social and 
mobile applications, the batch process breaks down. The 
data is now streaming into the server in real time, in a 
continuous fashion and the result is only useful if the delay 
is very short. The data growth and social media explosion 
have changed how we look at the data. There was a time 
when we used to believe that data of yesterday is recent. 
The matter of the fact newspapers is still following that 
logic. However, news channels and radios have changed 
how fast we receive the news. Today, people reply on social 
media to update them with the latest happening. On social 
media sometimes a few seconds old messages (a tweet, 
status updates etc.) is not something interests users. They 
often discard old messages and pay attention to recent 
updates. The data movement is now almost real time and 
the update window has reduced to fractions of the seconds. 
This high velocity data represent Big Data. 

 
3 ) Variety: Data can be stored in multiple formats. For 
example database, excel, csv, access or for the matter of the 
fact, it can be stored in a simple text le. Sometimes the data 
is not even in the traditional format as we assume, it may be 
in the form of video, SMS, pdf or something we might have 
not thought about it. One no longer has control over the 
input data format. Structure can no longer be imposed like 
in the past in order to keep control over the analysis. As 
new applications are introduced new data formats come to 
life. It is the need of the organization to arrange it and make 
it meaningful. It will be easy to do so if we have data in the 
same format, however it is not the case most of the time. 
The real world has data in many different formats and that 
is the challenge we need to overcome with the Big Data. 
This variety of the data represent Big Data. 

Anumol Johnson et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 127-132

www.ijcsit.com 128



III. INTRODUCTION TO HADOOP 

Hadoop was created by Doug Cutting, the creator of 
Apache Lucene, the widely used text search library. 
Hadoop has its origins in Apache Nutch, an open source 
web search engine, itself a part of the Lucene project. 
Hadoop was the Doug Cuttings toy elephant .That’s how 
the name came. Building a web search engine from scratch 
was an ambitious goal, for not only is the software required 
to crawl and index websites complex to write, but it is also 
a challenge to run without a dedicated operations team, 
since there are so many moving parts. It’s expensive, too. 
MikeCafarella and Doug Cutting estimated a system 
supporting a 1-billion-page index would cost around half a 
million dollars in hardware, with a monthly running cost of 
dollar 30,000. Nevertheless, they believed it was a worthy 
goal, as it would open up and ultimately democratizesearch 
engine algorithms. In January 2008, Hadoop was made its 
own top-level project at Apache, confirming its success and 
its diverse, active community. By this time, Hadoop was 
being used by many other companies besides Yahoo!, such 
as Last.fm, Facebook, and the New York Times. 

A. Hadoop Related Projects 

 
Fig 1: High Level Architecture of Hadoop 

 
1) Hbase: HBase is a distributed, column-oriented 

database. HBase uses HDFS for its underlying storage. It 
maps HDFS data into a database like structure and provides 
Java API access to this DB. It supports batch style 
computations using MapReduce and point queries (random 
reads). HBase is used in Hadoop when random, realtime 
read/write access is needed. Its goal is the hosting of very 
large tables running on top of clusters of commodity 
hardware. 

2) Pig: It is a data flow processing (scripting) language 
Apache Pig is a platform for analyzing large data sets that 
consists of a high-level language for expressing data 
analysis programs. The main characteristic of Pig programs 
is that their structure can be substantially parallelized 
enabling them to handle very large data sets, simple syntax 
and advanced built-in functionality provide an abstraction 
that makes development of Hadoop jobs quicker and easier 
to write than traditional Java MapReduce jobs. 

3) Zookeeper: It is a cluster configuration tool and 
distributed serialization manager useful to build large 
clusters of Hadoop nodes, high performance coordination 
service for distributed Cloud-based imageprocessing system 
with priority-based data distribution mechanism 
applications. ZooKeeper centralizes the services for 
maintaining the conguration information, naming, 

providing distributed synchronization, and providing group 
services. 

4) Hive: Hive is a data warehouse infrastructure built on 
top of Hadoop. Hive provides tools to enable easy data 
summarization, ad-hoc querying and analysis of large 
datasets stored in Hadoop files. It provides a mechanism to 
put structure on this data and it also provides a simple query 
language called Hive QL, based on SQL, enabling users 
familiar with SQL to query this data. 

5) Chukwa: It is used for monitoring large distributed 
clusters of servers. It is a data collection system for 
monitoring large distributed systems. Chukwa includes a 
flexible and powerful toolkit for displaying, monitoring and 
analyzing results to make the best use of the collected data. 
6) HCatalog: It is a storage management layer for Hadoop 
that enables users with different data processing tools. 
HCatalog. s table abstraction presents users with a 
relational view of data in the Hadoop distributed file system 
(HDFS) and ensures that users need not worry about where 
or in what format their data is stored. 

 
B. Advantages 

Hadooop is highly scalable. The hadoop node is spread 
across the racks. The nodes inside one rack are connected 
by switch. The racks are connected by one or more core 
switches. Scalability indicates that ability to add node 
inside one cluster without any overhead. Since the nodes 
are spread across one rack, to add one node we need to 
consider only the rack configuration .No need of 
considering the entire clutster.So scaling on hadoop cluster 
is easy.Hadoop is economically cheap not only because of it 
is an openource platform but also the hadoop is build using 
cheap commodity of hardwares its cost is comparatively 
low compared to other data processing tool. Hadoop is 
flexible. Unlike parallel RDBMS we do not have to pre-
process the data before using it. We donot have to design a 
star schema or update some data dictionary or  manipulate it 
with a separate ETL process. Moreover we can change the 
schema after the fact with very little cost or e 
ort. There are some workloads where flexibility is very 
valuable and those workloads are moving to hadoop 
quickly.Also hadoop can process any type of data without 
considering it schema.Since the Namenode contionouly 
pings every Datanode, any fault occur to the Datanode can 
be easily found out.Each Datanode send report to its server 
in the form heartbeats.This include the information about 
the replicas and other block information. So the server can 
ensure that the worker is still alive and do their work. If the 
worker is not responding in a specified amount of time the 
worker is assumed to be dead. 

IV. HADOOP DISTRIBUTED FILE SYSTEM 

 
It is the primary storage system used by Hadoop 

applications. It is a distributed file system that provides 
high throughput access to application data creating multiple 
replicas of data blocks and distributing them on compute 
nodes throughout a cluster to enable reliable and rapid 
computations. 

 

Anumol Johnson et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 127-132

www.ijcsit.com 129



A. Architecture 
HDFS architecture mainly composes of two components 
NameNode and DataNode. An HDFS cluster has two types 
of node operating in a master-worker pattern: a NameNode 
(the master) and a number of DataNodes (workers). The 
namenode manages the filesystem namespace.Datanodes 
are the workhorses of the filesystem. They store and 
retrieve blocks when they are told to (by clients or the 
namenode), and they report back to the namenode 
periodically with lists of blocks that they are storing. 

 

 
Fig 2: Hadoop Distributed Cluster File System 

Architechture 
 

1)  Name Node: Name Node decides about replication of 
data blocks. In a typical HDFS, block size is 64MB and 
replication factor is 3 (second copy on the local rack and 
third on the remote rack). The HDFS namespace is a 
hierarchy of  files and directories. Files and directories are 
represented on the NameNode by inodes, which record 
attributes like permissions, modification and access times, 
namespace and disk space quotas. The file content is split 
into large blocks (typically128 megabytes, but user 
selectable file-by-le) and each block of the le is 
independently replicated at multiple DataNodes (typically 
three, but user selectable file-by-file). An HDFS client 
wanting to read a file first contacts the NameNode for the 
locations of data blocks comprising the  file and then reads 
block contents from the DataNode closest to the client. 
When writing data, the client requests the NameNode to 
nominate a suite of three DataNodes to host the block 
replicas. The client then writes data to the DataNodes in a 
pipeline fashion. 

HDFS keeps the entire namespace in RAM. The inode data 
and the list of blocks belonging to each file comprise the 
metadata of the name system called the image. The 
persistent record of the image stored in the local hosts 
native files system is called a checkpoint. The NameNode 
also stores the modification log of the image called the 
journal in the local hosts native file system. For improved 
durability, redundant copies of the checkpoint and journal 
can be made at other servers. During restarts the NameNode 
restores the namespace by reading the namespace and 
replaying the journal. 
 

2) Data Node: Each block replica on a DataNode is 
represented by two files in the local hosts native file 
system.The first file contains the data itself and the second  
file is blocks metadata including checksums for the block 
data and the blocks generation stamp. During startup each 
DataNode connects to the NameNode and performs a 
handshake. The purpose of the handshake is to verify the 
namespace ID and the software version of the DataNode. If 
either does not match that of the NameNode the DataNode 
automatically shuts down. After the handshake the 
DataNode registers with the NameNode. DataNodes 
persistently store their unique storage IDs. The storage ID is 
an internal identifer of the DataNode, which makes it 
recognizable even if it is restarted with a different IP 
address or port. 
A DataNode identifies block replicas in its possession to the 
NameNode by sending a block report. A block report 
contains the block id, the generation stamp and the length 
for each block replica the server hosts. The first block 
report is sent immediately after the DataNode registration. 
Subsequent block reports are sent every hour and provide 
the NameNode with an up-todate view of where block 
replicas are located on the cluster. During normal operation 
DataNodes send heartbeats to the NameNode to con_rm 
that the DataNode is operating and the block replicas it 
hosts are available. The default heartbeat intervalis three 
seconds. If the NameNode does not receive a heartbeat 
from a DataNode in ten minutes the NameNode considers 
the DataNode to be out of service and the block replicas 
hosted by that DataNode to be unavailable. 
3) HDFS Client: User applications access the _le system 
using the HDFS client, a code library that exports the 
HDFS file system interface. When an application reads a 
file, the HDFS client first asks the NameNode for the list of 
DataNodes that host replicas of the blocks of the file. It then 
contacts a DataNode directly and requests the transfer of the 
desired block. When a client writes, it first asks the 
NameNode to choose DataNodes to host replicas of the first 
block of the file. The client organizes a pipeline from node-
to-node and sends the data. When the first block is filled, 
the client requests new DataNodes to be chosen to host 
replicas of the next block. A new pipeline is organized, and 
the client sends the further bytes of the file. Each choice of 
DataNodes is likely to be different. 
 
B. File I/O Operations 
Hadoop MapReduce applications use storage in a manner 
that is different from general-purpose computing. To read 
an HDFS  file, client applications simply use a standard 
Java file input stream, as if the file was in the native 
filesystem. Behind the scenes, however, this stream is 
manipulated to retrieve data from HDFS instead. First, the 
Name Node is contacted to request access permission. If 
granted, the Name Node will translate the HDFS filename 
into a list of the HDFS block IDs comprising that file and a 
list of Data Nodes that store each block, and return the lists 
to the client. Next, the client opens a connection to the 
closest Data Node (based on Hadoop rack-awareness, but 
optimally the same node) and requests a specific block ID. 

Anumol Johnson et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 127-132

www.ijcsit.com 130



That HDFS block is returned over the same connection, and 
the data delivered to the application. 
To write data to HDFS, client applications see the HDFS 
file as a standard output stream. Internally, however, stream 
data is first fragmented into HDFS-sized blocks (64MB) 
and then smaller packets (64kB) by the client thread. Each 
packet is enqueued into a FIFO that can hold up to 5MB of 
data, thus decoupling the application thread from storage 
system latency during normal operation. A second thread is 
responsible for dequeuing packets from the FIFO, 
coordinating with the Name Node to assign HDFS block 
IDs and destinations, and transmit-ting blocks to the Data 
Nodes (either local or remote) for storage. A third thread 
manages acknowledgements from the Data Nodes that data 
has been committed to disk. 
 

V.  MAP-REDUCE PROGRAMMINGG MODEL 
MapReduce is a data processing or parallel programming 
model introduced by Google. In this model, a user specifies 
the computation by two functions, Map and Reduce. In the 
mapping phase, MapReduce takes the input data and feeds 
each data element to the mapper. In the reducing phase, the 
reducer processes all the outputs from the mapper and 
arrives at a final result. In simple terms, the mapper is 
meant to filter and transform the input into something that 
the reducer can aggregate over. The underlying MapReduce 
library automatically parallelizes the computation, and 
handles complicated issues like data distribution, load 
balancing and fault tolerance. 
 
A. Architecture 
The mapReduce is an master slave architecture as in 
HDFS.There are two types of nodes Task-tracker 
andJobtracker.Tasktracker act as master node and 
jobtracker as slave.The tasktracker divide the entire 
program into a number of individual program and give it to 
the workers.The worker compute each program individually 
and result are give back to Tasktracker. Job Tracker runs 
with the namenode ,receives the users job ,decides on how 
many tasks will run (number of mappers) and decides on 
where to run each mapper (concept of locality) Master 
pings workers periodically to detect failures. 
 

 
Fig 3: Architecture of MapReduce 

 

 MapReduce mainly composed of two phases Map and 
Reduce Map, written by the user, takes an input pair and 
produces a set of intermediate key/value pairs. The 
MapReduce library groups together all intermediate values 
associated with the same intermediate key is and passes 
them to the reduce function. The reduce function, also 
written by the user, accepts an intermediate key I and a set 
of values for that key. It merges these values together to 
form a possibly smaller set of values. Typically just zero or 
one output value is produced per reduce invocation. The 
intermediate values are supplied to the users to reduce 
function via an iterator. 
This allows us to handle lists of values that are too large to 
fit in memory The Map function receives a key/value pair 
as input and generates intermediate key/value pairs to be 
further processed. The Reduce function merges all the 
intermediate key/value pairs associated with the same 
(intermediate) key and then generates final output. There 
are three main roles: the master, mappers, and reducers. The 
single master acts as the coordinator responsible for task 
scheduling, job management, etc. MapReduce is built upon 
a distributed file system (DFS) which provides distributed 
storage. 
 
B. Execution Process in Mapreduce Programming Model 
In MapReduce programming model and a MapReduce job 
consists of a map function, a reduce function, and When a 
function called the below steps of actions take place. 
MapReduce will first divide the data into N partitions with 
size varies from 16MB to 64MB. Then it will start many 
programs on a cluster of different machines. One of 
program is the master program; the others are workers, 
which can execute their work assigned by master.  

 
Fig 4: Execution process of MapReduce Programming 

Model 
 
Master can distribute a map task or a reduce task to an idle 
worker. If a worker is assigned a Map task, it will parse the 
input data partition and output the key/value pairs, then pass 

Anumol Johnson et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 127-132

www.ijcsit.com 131



the pair to a user defined Map function. The map function 
will buffer the temporary key/value pairs in memory. The 
pairs will periodically be written to local disk and 
partitioned into P pieces. After that, the local machine will 
inform the master of the location of these pairs. If a worker 
is assigned a Reduce task and is informed about the location 
of these pairs, the Reducer will read the entire buffer by 
using remote procedure calls. After that, it will sort the 
temporary data based on the key. Then, the reducer will 
deal with all of the records. For each key and according set 
of values, the reducer passes key/value pairs to a user 
defined Reduce function.The output is the final output of 
this partition. After all of the mappers and reducers have 
finished their work, the master will return the result to 
users' programs. The output is stored in F individual files. 

VI. CONCLUSION 

The immense computational and storage power that a cloud 
infrastructure provides, can be aptly used to calculate large 
sets of data.Cloud technology progress and increased use of 
the Internet are creating very large new datasets with 
increasing value to businesses and processing power to 
analyze them affordable. BigData is still in its early infancy 
but it is already having a profound effect on technology 
companies and the way we do business. The size of these 
datasets suggests that exploitation may well require a new 
category of data storage and analysis systems with different 
architectures. Hadoop-MapReduce programming paradigm 
have a substantial base in the Big Data community due to 
the cost-effectiveness on commodity Linux clusters, and in 
the cloud via data upload to cloud vendors who have 
implemented Hadoop/HBase. The effectiveness and ease-
of-use of the MapReduce method in parallelization involves 
many data analysis algorithms. HDFS, the Distributed File 

System, is a distributed file system designed to hold very 
large amounts of data (terabytes or even petabytes), and 
provide high-throughput access to these 
information.Despite some of the shortcomings like failures 
and breakdown of name node, Hadoop with HDFS provides 
a quite good enough way of handling faults tolerance. 

ACKNOWLEDGMENT 

      I express my deepest thanks to “Mr. Havinah P H” the 
mentor of the seminar for guiding and correcting various 
documents of mine with attention and care. He has taken 
the pain to go through the seminar and make necessary 
correction as and when needed. I also extended my heartfelt 
thanks to my family and well wishers.  

REFERENCES 
[1]  R. Taylor. An overview of the Hadoop/MapReduce/HBase 

framework and its current applications in bioinformatics BMC 
bioinformatics,11(Suppl 12):S1, 2010. 

[2]   A. Pavlo et al . A comparison of approaches to large-scale data 
analysis. In Proceedings of the ACM SIGMOD, pages 165178, 2009. 

[3]  R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud 
computing and emerging IT platforms: vision, hype, and reality for 
delivering computing as the 5th utility, Future Generation Computer 
Systems 25 (2009) 599616. 

[4]  Hadoop Distributed File Systemhttp://hadoop.apache.org/hdfs[3] 
Borthakur, D. (2007) The Hadoop Distributed File System: 
Architecture and 
Design.http://hadoop.apache.org/common/docs/r0.18.0/hdfs_design.p
df 

[5]  W. Jiang et al . A Map-Reduce System with an Alternate API for 
Multi-core Environments. In Proceedings of the 10th IEEE/ACM 
CCGrid, pages 8493, 2010. 

[6]  Map-Reduce: Simplied Data Processing on LargeClusters, by Jerey 
Dean and SanjayGhemawat; fromGoogle Research. 

 

 
 

Anumol Johnson et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (1) , 2015, 127-132

www.ijcsit.com 132




